viernes, 24 de septiembre de 2010


· Multiplicación (Por división de Frecuencia, Por División de Onda, por División de Tiempo)
Es la combinación de dos o más los cuales pueden ser canales de información en un solo medio de transmisión usando un dispositivo llamado multiplexor. El proceso inverso se conoce como demultiplexación. Un concepto muy similar es el de control de acceso al medio.
Existen muchas estrategias de multiplicación según el protocolo de comunicación empleado, que puede combinarlas para alcanzar el uso más eficiente; los más utilizados son:
§ La por división de tiempo o TDM (Time division multiplexing);http://en.wikipedia.org/wiki/File:Telephony_multiplexer_system.gif
§ La multiplexación por división de frecuencia o FDM (Frequency-division multiplexing) y su equivalente para medios ópticos, por división de longitud de onda o WDM (de Wavelength);
§ La multiplexación por división en código o CDM (Code division multiplexing);
Multiplexación por División de Frecuencias Orthogonales,
En inglés Orthogonal Frequency Division Multiplexing (OFDM), es una multiplexación que consiste en enviar un conjunto de ondas portadoras de diferentes frecuencias, donde cada una transporta información, la cual es modulada en QAM o en PSK.
Normalmente se realiza la multiplexación OFDM tras pasar la señal por un codificador de canal con el objetivo de corregir los errores producidos en la transmisión, entonces esta multiplexación se denomina COFDM, del inglés Coded OFDM.
Debido al problema técnico que supone la generación y la detección en tiempo contínuo de los cientos, o incluso miles, de portadoras equiespaciadas que forma OFDM, los procesos de multiplexación y demultiplexación se realizan en tiempo discreto mediante la IDFT y la DFT respectivamente.

multiplexación por división de longitud de onda (WDM, del inglés Wavelength Division Multiplexing) es una tecnología que multiplexa varias señales sobre una sola fibra óptica mediante portadoras ópticas de diferente longitud de onda, usando luz procedente de un láser o un LED.
Este término se refiere a una portadora óptica (descrita típicamente por su longitud de onda) mientras que la multiplexación por división de frecuencia generalmente se emplea para referirse a una portadora de radiofrecuencia (descrita habitualmente por su frecuencia). Sin embargo, puesto que la longitud de onda y la frecuencia son inversamente proporcionales, y la radiofrecuencia y la luz son ambas formas de radiación electromagnética, la distinción resulta un tanto arbitraria.
a multiplexación por división de tiempo (TDM) es una técnica que permite la transmisión de señales digitales y cuya idea consiste en ocupar un canal (normalmente de gran capacidad) de trasmisión a partir de distintas fuentes, de esta manera se logra un mejor aprovechamiento del medio de trasmisión. El Acceso múltiple por división de tiempo (TDMA) es una de las técnicas de TDM más difundidas.

· Codificación y decodificación (Modulación de Amplitud, Modulación por desplazamiento de fase)
s el proceso por el cual la información de una fuente es convertida en símbolos para ser comunicada. En otras palabras, es la aplicación de las reglas de un código.El proceso contrario es la decodificación (o decoding), es decir, la conversión de esos símbolos a información que pueda ser entendida por el receptor.CODIFICACIÓN
Conforme al Diccionario de la Lengua Española de la Real Academia Española, "codificar es hacer o formar un cuerpo de leyes armónico y sistemático".
El resultado de la codificación son los códigos, los cuales son cuerpos legales sistemáticos, redactados con la técnica legislativa más depurada.
La codificación por lo general es encargada a una comisión de jurisconsultos para que redacten el Código.
Cuando recién aparecieron los Códigos modernos o contemporáneos (es decir, en el siglo XVIII), la codificación fue rechazada por la Escuela Histórica del Derecho, por que se pensó que los Códigos eran definitivos y que por ello no permitirían el desarrollo del derecho (tesis que no prosperó).

Este modelo ha Sido criticado por su linealidad -Emisor/Mensaje/Receptor- por su concentración en
El nivel del intercambio de mensaje y por la ausencia de una concepción
Estructurada de los diferentes momentos como una estructura compleja de
Relaciones. Pero también es posible (y útil) pensar este proceso en términos de
Una estructura producida y sostenida a través de la articulación de momentos
Relacionados pero distintivos -Producción, Circulación, Distribución/Consumo,
Reproducción-. Esto llevaría a pensar el proceso como una "estructura com
Amplitud modulada (AM) o modulación de amplitud es un tipo de modulación no lineal que consiste en hacer variar la amplitud de laonda portadora de forma que esta cambie de acuerdo con las variaciones de nivel de la señal moduladora, que es la información que se va a transmitir.
AM es el acrónimo de Amplitude Modulation (en español: Modulación de Amplitud) la cual consiste en modificar la amplitud de una señal de alta frecuencia, denominada portadora, en función de una señal de baja frecuencia, denominada moduladora, la cual es la señal que contiene la información que se desea transmitir. Entre los tipos de modulación AM se encuentra la modulación de doble banda lateral con portadora (DSBFC).
La modulación por desplazamiento de fase o PSK (Phase Shift Keying) es una forma de modulación angular que consiste en hacer variar la fase de la portadora entre un número de valores discretos. La diferencia con la modulación de fase convencional (PM) es que mientras en ésta la variación de fase es continua, en función de la señal moduladora, en la PSK la señal moduladora es una señal digital y, por tanto, con un número de estados limitado.

· Codificación Manchester
· La codificación Manchester, también denominada codificación bifase-L, es un método de codificación eléctrica de una señal binaria en el que en cada tiempo de bit hay una transición entre dos niveles de señal. Es una codificación autosincronizada, ya que en cada bit se puede obtener la señal de reloj, lo que hace posible una sincronización precisa del flujo de datos. Una desventaja es que consume el doble de ancho de banda que una transmisión asíncrona. Hoy en día hay numerosas codificaciones (8b/10b) que logran el mismo resultado pero consumiendo menor ancho de banda que la codificación Manchester.


· Correciòn de Errores (Métodos y Mecanismos)
Para poder recuperar los datos perdidos es necesario emplear códigos altamente redundantes, de esta forma, la utilización efectiva del canal de transmisión se reduce considerablemente. Es necesario pues, que el receptor disponga de los mecanismos necesarios (Hardware) para recuperar la información a través de los datos corruptos que le llegan
los códigos detectores y correctores de error se refieren a los errores de transmisión en las líneas se deben a mucho a diversos factores, como el ruido térmico, ruido impulsivo y ruido de intermodulación. Dependiendo del medio de transmisión y del tipo decodificación empleado, se pueden presentar otros tipos de anomalías como ruido de redondeo y atenuación, así como cruce de líneas y eco.
§códigos detectores de error: Consiste en incluir en los datos transmitidos, una cantidad de bits redundantes de forma que permita al receptor detectar que se ha producido un error, pero no qué tipo de error ni donde, de forma que tiene que solicitar retransmisión.
§ Códigos correctores de error: Consiste en la misma filosofía que el anterior, incluir información redundante pero en este caso, la suficiente como para permitirle al receptor deducir cual fue el carácter que se transmitió, por lo tanto, el receptor tiene capacidad para corregir un número limitado de errores.
Corrección de errores .
Hasta el momento, los mecanismos que hemos estudiado se encuadran dentro de los métodos de detección de errores, con capacidad de detección pero no de corrección. A continuación vamos a desarrollar los métodos de corrección de errores.
La corrección de errores se puede tratar de dos formas:
§ Cuando se detecta el error en un determinado fragmento de datos, el receptor solicita al emisor la retransmisión de dicho fragmento de datos.
§ El receptor detecta el error, y si están utilizando información redundante suficiente para aplicar el método corrector, automáticamente aplica los mecanismos necesarios para corregir dicho error.
§ Bits redundantes. Teóricamente es posible corregir cualquier fragmento de código binario automáticamente. Para ello, en puesto de los códigos detectores de errores utilizando los códigos correctores de errores, de mayor complejidad matemática y mayor número de bits redundantes necesarios. La necesidad de mayor número de bits redundantes hace que a veces la corrección de múltiples bits sea inviable e ineficiente por el elevado número bits necesarios. Por ello normalmente los códigos correctores de error se reducen a la corrección de 1,2 ó 3 bits.
§ Distancia Hamming. La distancia Hamming H entre dos secuencias binarias S1yS2 de la misma longitud, viene definida por el número de bits en que difieren.
§ Código Hamming. Código corrector de errores, desarrollado por R.W. Hamming en 1950, y se basa en los conceptos de bits redundantes y Distancia Hamming.
Un Hamming puede utilizarse en mensajes de caracteres de cualquier longitud, aunque ilustraremos su utilización con caracteres ASCII de 7 bits y paridad par. Necesitamos 4 bits (24 > 7 + 4 + 1), que se situaran en las posiciones 1,2,4 y 8 (posiciones potencia de 2). Nos referimos a los bits redundantes como r1,r2,r4 y r8.
§ En este apartado vamos a centrarnos en un tipo concreto de código corrector de errores: los códigos Reed-Solomon

· Control de Flujo
Qué es controlar el flujo...
Es determinar el orden en el que se ejecutarán las instrucciones en nuestros programas. Si no existiesen las sentencias de control entonces los programas se ejecutarían de forma secuencial, empezarían por la primera instrucción e irían una a una hasta llegar a la última.
Pero, obviamente este panorama sería muy malo para el programador. Por un lado, en sus programas no existiría la posibilidad de elegir uno de entre varios caminos en función de ciertas condiciones (sentencias alternativas). Y por el otro, no podrían ejecutar algo repetidas veces, sin tener que escribir el código para cada una (sentencias repetitivas).
Para estos dos problemas tenemos dos soluciones: las sentencias de control alternativas y las repetitivas. Estos dos conjuntos de sentencias forman en Pascal el grupo de las sentencias estructuradas. Y se les llama estructuradas porque a diferencia de las simples pueden contener en su cuerpo otras sentencias.
Las sentencias alternativas también son conocidas como sentencias selectivas porque permiten seleccionar uno de entre varios caminos por donde seguirá la ejecución del programa. En algunos casos esta selección viene determinada por la evaluación de una expresion lógica. Este tipo de sentencias se dividen en dos:
· La sentencia if
· La sentencia case
A las sentencias repetitivas se les conoce también como sentencias iterativas ya que permiten realizar algo varias veces (repetir, iterar). Dentro de ellas distinguimos tres:


· Control de Congestión
n casos de extrema congestión, los routers comienzan a “rechazar” paquetes, disminuyendo de esta forma el rendimiento del sistema. Las razones de la congestión son muchas, entre ellas están: • Por ejemplo, si por 4 líneas le llega información a un router y todas necesitan la misma línea de salida → competencia. • Insuficiente cantidad de memoria en los routers. Pero añadir más memoria ayuda hasta cierto punto solamente, ya que si tiene demasiada memoria, el tiempo para llegar al primero de la cola puede ser demasiado. • Procesadores lentos en los routers. El proceso de “analizar” los paquetes es caro, así que procesadores lentos pueden provocar congestión. A. El control de flujo y el control de la congestión no son lo mismo: Control de Flujo: se preocupa de que un emisor rápido no sature a un receptor lento.
En este caso, dada la gran velocidad a la que produce y envía información, el nodo desborda al PC, por lo que éste debe enviar información de control (control de flujo) para que el nodo reduzca su tasa de envío de datos. De esta forma, parando a la fuente cada cierto tiempo, el PC puede procesar el tráfico que le envía el nodo.
Control de Congestión: su función es tratar de evitar que se sobrecargue la red.
La congestión de redes es el fenómeno producido cuando a la red (o parte de ella) se le ofrece más tráfico del que puede cursar
· Conformacion de Tráfico
Especificación y conformación del tráfico
Una especificación de flujo es un acuerdo entre todos los componentes de una red para especificar el tráfico que va a tener de una forma precisa y predeterminada [Tanembaum96]. Consiste en una serie de parámetros que describen como el tráfico es introducido en la red y la calidad de servicio deseado por las aplicaciones. La idea es que antes de establecer una conexión, el origen del flujo informe sobre las características del flujo a transmitir y el servicio deseado (especificación de la calidad de servicio). Toda esta información es la que compone la especificación del flujo.
Uno de los componentes más importantes de esta especificación es la descripción de cómo se va introducir el tráfico en la red que se suele denominar modelo del tráfico. El objetivo es regular el tráfico a transmitir con el objeto de eliminar la congestión en la red debido a las características de gran variabilidad del tráfico. Este mecanismo de regulación del tráfico de acuerdo al modelo del tráfico se denomina conformación del tráfico

· Control de Fluctuación: preocupación por la fluctuación de los ingresos, las ventas, fluctuación en los tiempos de entrega de las mercaderías, variación en las horas de llegada del personal, variaciones en los presupuestos financieros, variaciones en el tiempo de atención en una ventanilla de un banco, en una biblioteca o en una institución de servicio.Igualmente hay preocupación de porqué se tienen problemas en el peso de los productos, en el llenado de envases, en la dureza o viscosidad de los productos, lo mismo que en las dimensiones. Un profesor se preocupa porque existe variación en las notas que sacan los estudiantes.Hay una permanente exigencia a que todos los vendedores alcancen las metas o los estudiantes las notas mínimas. Se espera que los presupuestos sean lo más exactos posible. Hoy día la administración basada en datos se ha puesto de moda. El Balanced Scorecard recomienda indicadores, metas, resultados, mejoramiento continuo, evaluación del desempeño. ISO en su cláusula de análisis de datos plantea que la organización debe determinar, recopilar y analizar los datos apropiados para demostrar la idoneidad y la eficacia del sistema de gestión de la calidad y para evaluar dónde puede realizarse la mejora continua del sistema de gestión de la calidad.
Soporte remoto: Se puede definir el enrutamiento como la capacidad de transmitir datos entre redes interconectadas. Al agente encargado de realizar este encaminamiento de información entre redes se conoce como enrutador pudiendo ser de tipo hardware si es un dispositivo físico dedicado al encaminamiento y de tipo software en caso de propósito general que ejecutan lógica de encaminamiento.

El acceso remoto permite a los clientes conectarse a los recursos de una red como si estuviesen físicamente conectados a la misma. Debe existir un agente encargado de recibir la petición del cliente, autentificarla y autorizarla, permitiendo el acceso.

Windows 2000 proporciona el servicio RRAS (Routing and Remote Access Service) que permite efectuar enrutamiento entre redes LAN, WAN y VPN (Virtual Private Network) sin la necesidad de disponer de un dispositivo encaminador dedicado.

o RRAS puede trabajar con diferentes plataformas hardware y adaptadores de red y puede enrutar simultáneamente IP e IPX.
o El enrutamiento podrá realizarse sobre líneas analógicas o sobre la Red Digital de Servicios Integrados, o bien sobre redes VPN.
o RRAS permite al servidor actuar como servidor de acceso remoto a través de la línea telefónica analógica, digital o bien a través de VPN.
o El servicio de acceso remoto está integrado en Directorio Activo, por lo que está sujeto a la seguridad definido en el mismo (directivas de acceso remoto, bloqueo de cuentas ante accesos fallidos, soporte de protocolos de autenticación como MS-CHAP y EAP, etc.).

Al realizar una instalación de Windows 2000, RRAS se instala automáticamente desactivado. El proceso para convertir un equipo con Windows 2000 Server en un enrutador y servidor de acceso remoto es el siguiente:

1. Se activa el servicio RRAS desde la consola administrativa “Enrutamiento y acceso remoto”.
2. Se configuran los adaptadores de red para atiendan las peticiones de los clientes y encaminen los paquetes.

A continuación para proceder a conectar nuestra red a Internet, podemos utilizar uno de los dos métodos siguientes:
1.- Una conexión enrutada
En el caso de una conexión enrutada, el equipo donde se ejecuta Windows 2000 Server actúa como un enrutador IP que reenvía los paquetes de información entre los equipos de la de red local y los hosts de Internet.
2.- Conexión traducida
En el caso de una conexión traducida, el equipo donde se ejecuta Windows 2000 Server actúa como un traductor de direcciones de red, traduciendo las direcciones de los paquetes que se van a reenviar entre los clientes de nuestra red y los hosts de Internet..
En Windows 2000 Server, es posible configurar una conexión traducida a Internet mediante la característica "Compartir conexión a Internet" de "Conexiones de red y acceso telefónico", o el protocolo de enrutamiento de "Traducción de direcciones de red (NAT)" suministrado con el servicio de enrutamiento y acceso remoto.
La característica "Compartir conexión a Internet" está diseñada para proporcionar una configuración en un solo paso (una única casilla de verificación) en el equipo donde se ejecute Windows 2000, a fin de suministrar una conexión traducida a Internet para todos los equipos de nuestra red local. Sin embargo, una vez habilitada, no permite más configuración que la de las aplicaciones y servicios de la red. Por ejemplo, "Compartir conexión a Internet" está diseñada para una única dirección IP obtenida a partir de un proveedor de servicios Internet (ISP) y no permite que el usuario cambie el intervalo de direcciones IP asignadas a los equipos de la red local.
El protocolo de enrutamiento "Traducción de direcciones de red (NAT)" está diseñado para proporcionar una conexión traducida a Internet con la máxima flexibilidad en la configuración del equipo donde se ejecuta Windows 2000 Server. La traducción de direcciones de red requiere más pasos en la configuración; sin embargo, cada uno de estos pasos puede personalizarse.
El protocolo NAT admite intervalos de direcciones IP asignadas por nuestro proveedor de Servicios de Internet y la configuración del intervalo de direcciones IP asignadas a los equipos de nuestra red.
En la tabla siguiente se resumen las características y capacidades de “Compartir conexión a Internet" y la "Traducción de direcciones de red".
Compartir conexión a Internet
Traducción de direcciones de red


Configuración con una única casilla de verificación
Configuración manual
Dirección IP pública única
Varias direcciones IP públicas
Intervalo fijo de direcciones para hosts de SOHO
Intervalo configurable de direcciones para hosts de SOHO
Interfaz de SOHO única
Varias interfaces de SOHO

Acceso remoto: En redes de computadoras, acceder desde una computadora a un recurso ubicado físicamente en otra computadora, a través de una red local o externa (como internet).En el acceso remoto se ven implicados protocolos para la comunicación entre máquinas, yaplicaciones en ambas computadoras que permitan recibir/enviar los datos necesarios. Además deben contar con un fuerte sistema de seguridad (tanto la red, como los protocolos y las aplicaciones).Remotamente se puede acceder prácticamente a cualquier recurso que ofrece una o más computadoras. Se pueden acceder a archivos, dispositivos periféricos (como impresoras),configuraciones, etc. Por ejemplo, se puede acceder a un servidor de forma remota paraconfigurarlo, controlar el estado de sus servicios, transferir archivos, etc.Existen múltiples programas que permiten controlar una computadora remotamente, entre ellosuno de los más populares es el VNC, que es gratuito y libre. También existen aplicaciones webque permiten el acceso remoto a determinados recursos utilizando sólo un navegador web, ya sea a través de internet o cualquier otra red.

i.p


PROTOCOLO DE INTERNET
Internet Protocolo (IP)
Familia:
Familia de protocolos de Internet
Función:
Envío de paquetes de datos tanto a nivel local como a través de redes.
Última versión:
IPv6

Ubicación en la pila de protocolos
Aplicación
http, ftp, Ethernet, ...
Transporte
TCP, UDP, ...
Red
IP
Enlace

Ethernet, TokenHYPERLINK "http://es.wikipedia.org/wiki/Token_Ring" Ring,FDDI, ...
Estándares:
RFC 791 (1981)
RFC 2460 (IPv6, 1998)
Internet Protocolo o IP es un protocolo no orientado a conexión usado tanto por el origen como por el destino para la comunicación de datos a través de una red de paquetes conmutados.
Los datos en una red basada en IP son enviados en bloques conocidos como paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes.
IP provee un servicio de datagramas no fiable (también llamado del mejor esfuerzo (best effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la capa de transporte, como TCP.
Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento.
Las cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los conmutadores de paquetes (switches) y los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes.
El IP es el elemento común en la Internet de hoy. El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits (lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.
Direccionamiento IP y enrutamiento
Quizás los aspectos más complejos de IP son el direccionamiento y el enrutamiento. El direccionamiento se refiere a la forma como se asigna una dirección IP y como se dividen y se agrupan subredes de equipos.
El enrutamiento consiste en encontrar un camino que conecte una red con otra y, aunque es llevado a cabo por todos los equipos, es realizado principalmente por enrutadores, que no son más que computadores especializados en recibir y enviar paquetes por diferentes interfaces de red, así como proporcionar opciones de seguridad, redundancia de caminos y eficiencia en la utilización de los recursos.
Dirección IP
Una dirección IP es un número que identifica de manera lógica y jerárquicamente a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo de Internet (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número físico que es asignado a la tarjeta o dispositivo de red (viene impuesta por el fabricante), mientras que la dirección IP se puede cambiar.
Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar al reconectar, y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática); es decir, no cambia con el tiempo. Los servidores de correo, dns, ftp públicos, servidores web, necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se facilita su ubicación. Las máquinas tienen una gran facilidad para manipular y jerarquizar la información numérica, y son altamente eficientes para hacerlo y ubicar direcciones IP. Sin embargo, los seres humanos debemos utilizar otra notación más fácil de recordar y utilizar; tal es el caso URLs y resolución de nombres de dominio DNS.
Enrutamiento

En comunicaciones, el encaminamiento (a veces conocido por el anglicismo ruteo o enrutamiento) es el mecanismo por el que en una red los paquetes de información se hacen llegar desde su origen a su destino final, siguiendo un camino o ruta a través de la red. En una red grande o en un conjunto de redes interconectadas el camino a seguir hasta llegar al destino final puede suponer transitar por muchos nodos intermedios.
Asociado al encaminamiento existe el concepto de métrica, que es una medida de lo "bueno" que es usar un camino determinado. La métrica puede estar asociada a distintas magnitudes: distancia, coste, retardo de transmisión, número de saltos, etc., o incluso a una combinación de varias magnitudes. Si la métrica es el retardo, es mejor un camino cuyo retardo total sea menor que el de otro. Lo ideal en una red es conseguir el encaminamiento óptimo: tener caminos de dista
¿Cuáles son los beneficios de la conexión en red?En una red se puede compartir la información y los recursos. Gracias a esta facilidad contamos con una serie de ventajas:· Podemos compartir los periféricos caros, como pueden ser las impresoras. En una red, todos los ordenadores pueden acceder a la misma impresora. · Puede transferir datos entre los usuarios sin utilizar disquetes. La transferencia de archivos a través de la red elimina el tiempo que se pierde copiando archivos en disquete y luego en otro PC. Además, hay menos restricciones en el tamaño del archivo que se transfiere a través de la red. · Puede centralizar programas informáticos clave, como son los de finanzas y contabilidad. A menudo, los usuarios tienen que acceder al mismo programa para trabajar en él simultáneamente. Un ejemplo de lo anterior sería el sistema de una oficina de reservación de tickets, en el que es importante evitar que los tickets se vendan dos veces. · Se puede crear una copia de seguridad del archivo automáticamente. Se puede utilizar un programa informático para hacer copias de seguridad de archivos automáticamente, con lo que se ahorra tiempo y se garantiza que todo el trabajo ha quedado guardado. En una WAN, se puede compartir información y recursos en un área geográficamente mayor. Gracias a esta facilidad contamos con una serie de ventajas:· Se puede enviar y recibir correo electrónico a y desde cualquier punto del globo, comunicar mensajes y avisos a mucha gente, en un sinfín de diferentes áreas, rápida y económicamente. · Se pueden transferir archivos a y desde los ordenadores de compañeros de trabajo ubicados en diferentes puntos, o acceder a la red de la compañía desde el hogar. · Se puede acceder a los vastos recursos de Internet y de la Web mundial. ¿Qué es una tarjeta de red?Una tarjeta de interfaz de red o Network Interface Card (NIC) (también conocida como adaptadora o tarjeta adaptadora) es una placa de circuito instalada en un componente de equipo de informática, como un PC, por ejemplo, que le permite conectar su PC a una red.Todos los PC necesitan tarjetas de interfaz de red (NIC) para poder utilizarse en operaciones en red. Algunos se venden con la tarjeta NIC incorporada. Cuando escoja una NIC (también conocida como tarjeta adaptadora) para instalar en un PC, debería considerar lo siguiente:· La velocidad de su concentrador, conmutador, o servidor de impresora - Ethernet (10Mbps) o Fast Ethernet (100Mbps). · El tipo de conexión que necesita - RJ-45 para par trenzado o BNC para cable coaxial . · El tipo de conector NIC disponible dentro de su PC-ISA o PCI. Velocidad de conexiónDebe utilizarse una NIC de Ethernet con un concentrador o conmutador Ethernet, y debe utilizarse una NIC de Fast Ethernet con un concentrador o conmutador Fast Ethernet.Si conecta su PC a un dispositivo dual speed que admite ambos valores, 10 y 100Mbps, puede utilizar una NIC de 10Mbps o una NIC de 100Mbps. Un puerto en un dispositivo dual speed ajusta su velocidad automáticamente para que coincida con la velocidad más alta admitida por ambos extremos de la conexión. Por ejemplo, si la NIC soporta solamente 10Mbps, el puerto del concentrador dual speed que está conectado a dicha NIC pasará a ser un puerto de 10Mbps. Si la NIC soporta 100Mbps, la velocidad del puerto del concentrador será de 100Mbps.De un modo semejante, si tiene una NIC 10/100, podrá conectarla al concetrador Ethernet de 10Mbps o al concentrador Fast Ethernet de 100Mbps. La NIC 10/100 ajustará su velocidad para que coincida con la velocidad más alta soportada por ambos extremos de la conexión.Tipo de conexiónSi está instalando una red que utiliza cables de par trenzado, necesitará una NIC con un conector RJ-45.
Conectores ISA y PCIHay dos tipos comunes de conectores de NIC para PC:· Los zócalos ISA (Arquitectura de normas industriales) miden unos 14cm de largo. · Los zócalos PCI (Interconexión de componente periférico) se utilizan en todos los PC Pentium de sobremesa. Los zócalos PCI tienen un mayor rendimiento que los ISA. Los zócalos PCI miden unos 9cm de longitud. Consulte la guía del usuario de su PC para averiguar qué tipo de conector hay disponible en su PC.
NIC especializadasEn algunos casos, es posible que necesite utilizar NIC especializadas. Por ejemplo, si su ordenador es un portátil, necesitará utilizar una tarjeta PCMCIA.
Cuando elija una tarjeta PCMCIA, deberá considerar lo siguiente:· La velocidad de su concentrador, conmutador o servidor de impresora - Ethernet (10Mbps) o Fast Ethernet (100Mbps). · El tipo de conexión que necesita - RJ-45 para par trenzado o BNC para cable coaxial. Si tiene un puerto USB, podría considerar utilizar un Interfaz de red USB (USB Network Interface).

Concentradores y conmutadores Los concentradores y conmutadores se utilizan para conectar sus PCs, impresoras y otros dispositivos. Los concentradores se diferencian de los conmutadores en el modo en el que administran el tráfico de la red. El término "concentrador" se utiliza a veces para referirse a una pieza de equipo de red que conecta PCs entre sí, aunque realmente hace las veces de repetidor. Se llama así porque pasa o repite toda la información que recibe a todos sus puertos.Los concentradores se pueden utilizar para ampliar una red. No obstante, de esta acción puede resultar un exceso de tráfico innecesario porque se envía la misma información a todos los dispositivos de una red.Los concentradores están indicados para redes pequeñas, aunque es posible que las redes con alta carga de tráfico necesiten equipos de red adicionales, como puede ser un conmutador, que reduciría el tráfico innecesario. Los conmutadores utilizan la información de la dirección de cada paquete para controlar el flujo del tráfico de la red. Por medio de la monitorización de los paquetes que recibe, un conmutador distingue qué dispositivos están conectados a sus puertos, y envía los paquetes a los puertos adecuados solamente. Un conmutador reduce la cantidad de tráfico innecesario porque la información recibida en un puerto se envía solamente al dispositivo que tiene la dirección de destino correcta, a diferencia de un concentrador, que la envía a todos los puertos.
Dirección IP
Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a una interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar. Esta dirección puede cambiar 2 ó 3 veces al día; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).

Direcciones IPv4 IPv4
Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto puede ser entre 0 y 255 [el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 256 en total, 255 más la 0 (0000 0000)].
En la expresión de direcciones IPv4 en decimal se separa cada octeto por un carácter único ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255, salvo algunas excepciones. Los ceros iniciales, si los hubiera, se pueden obviar (010.128.001.255 sería 10.128.1.255).


Direcciones privadas
Hay ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no puede existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten a través del protocolo NAT. Las direcciones privadas son:
• Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts). 1 red clase A, uso VIP, ej.: la red militar estadounidense.[cita requerida]
• Clase B: 172.16.0.0 a 172.31.255.255 (12 bits red, 20 bits hosts). 16 redes clase B contiguas, uso en universidades y grandes compañías.
• Clase C: 192.168.0.0 a 192.168.255.255 (16 bits red, 16 bits hosts). 256 redes clase C contiguas, uso de compañías medias y pequeñas además de pequeños proveedores de internet (ISP).
A partir de 1993, ante la previsible futura escasez de direcciones IPv4 debido al crecimiento exponencial de hosts en Internet, se empezó a introducir el sistema CIDR, que pretende en líneas generales establecer una distribución de direcciones más fina y granulada, calculando las direcciones necesarias y "desperdiciando" las mínimas posibles, para rodear el problema que la distribución por clases había estado gestando. Este sistema es, de hecho, el empleado actualmente para la delegación de direcciones.
Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño a menudo se usa TCP/IP. Por ejemplo, los bancos pueden utilizar TCP/IP para conectar los cajeros automáticos que no se conectan a la red pública, de manera que las direcciones privadas son ideales para ellas. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles.
Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles. Según lo acordado, cualquier tráfico que posea una dirección destino dentro de uno de los intervalos de direcciones privadas no se enrutará a través de Internet.
Máscara de subred
La máscara permite distinguir los bits que identifican la red y los que identifican el host de una dirección IP. Dada la dirección de clase A 10.2.1.2 sabemos que pertenece a la red 10.0.0.0 y el host al que se refiere es el 2.1.2 dentro de la misma. La máscara se forma poniendo a 255 los bits que identifican la red y a 0 los bits que identifican el host. De esta forma una dirección de clase A tendrá como máscara 255.0.0.0, una de clase B 255.255.0.0 y una de clase C 255.255.255.0. Los dispositivos de red realizan un AND entre la dirección IP y la máscara para obtener la dirección de red a la que pertenece el host identificado por la dirección IP dada. Por ejemplo un router necesita saber cuál es la red a la que pertenece la dirección IP del datagrama destino para poder consultar la tabla de encaminamiento y poder enviar el datagrama por la interfaz de salida. Pará esto se necesita tener cables directos.


Creación de subredes
El espacio de direcciones de una red puede ser subdividido a su vez creando subredes autónomas separadas. Un ejemplo de uso es cuando necesitamos agrupar todos los empleados pertenecientes a un departamento de una empresa. En este caso crearíamos una subred que englobara las direcciones IP de éstos. Para conseguirlo hay que reservar bits del campo host para identificar la subred estableciendo a uno los bits de red-subred en la máscara. Por ejemplo la dirección 172.16.1.1 con máscara 255.255.255.0 nos indica que los dos primeros octetos identifican la red (por ser una dirección de clase B), el tercer octeto identifica la subred (a 1 los bits en la máscara) y el cuarto identifica el host (a 0 los bits correspondientes dentro de la máscara). Hay dos direcciones de cada subred que quedan reservadas: aquella que identifica la subred (campo host a 0) y la dirección para realizar broadcast en la subred (todos los bits del campo host.
Dirección IP
Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a una interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar. Esta dirección puede cambiar 2 ó 3 veces al día; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.

Direcciones IPv4
IPv4

Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto puede ser entre 0 y 255 [el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 256 en total, 255 más la 0 (0000 0000)].
En la expresión de direcciones IPv4 en decimal se separa cada octeto por un carácter único ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255, salvo algunas excepciones. Los ceros iníciales, si los hubiera, se pueden obviar (010.128.001.255 sería 10.128.1.255).

Clase
Rango
N° de Redes
N° de Host
Máscara de Red
BroadcastHYPERLINK "http://es.wikipedia.org/wiki/Broadcast_(inform%C3%A1tica)" ID
A
1.0.0.0 - 127.255.255.255
126
16.777.214
255.0.0.0
x.255.255.255
B
128.0.0.0 - 191.255.255.255
16.382
65.534
255.255.0.0
x.x.255.255
C
192.0.0.0 - 223.255.255.255
2.097.150
254
255.255.255.0
x.x.x.255
D
224.0.0.0 - 239.255.255.255

E
240.0.0.0 - 255.255.255.255


• La dirección 0.0.0.0 es utilizada por las máquinas cuando están arrancando o no se les ha asignado dirección.
• La dirección que tiene su parte de host a cero sirve para definir la red en la que se ubica. Se denomina dirección de red.
• La dirección que tiene su parte de host a unos sirve para comunicar con todos los hosts de la red en la que se ubica. Se denomina dirección de broadcast.
• Las direcciones 127.x.x.x se reservan para pruebas de retroalimentación. Se denomina dirección de bucle local o loopback.

Direcciones privadas
Hay ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no puede existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten a través del protocolo NAT. Las direcciones privadas son:
• Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts). 1 red clase A, uso VIP, ej.: la red militar estadounidense.[cita requerida]
• Clase B: 172.16.0.0 a 172.31.255.255 (12 bits red, 20 bits hosts). 16 redes clase B contiguas, uso en universidades y grandes compañías.
• Clase C: 192.168.0.0 a 192.168.255.255 (16 bits red, 16 bits hosts). 256 redes clase C contiguas, uso de compañías medias y pequeñas además de pequeños proveedores de internet (ISP).
A partir de 1993, ante la previsible futura escasez de direcciones IPv4 debido al crecimiento exponencial de hosts en Internet, se empezó a introducir el sistema CIDR, que pretende en líneas generales establecer una distribución de direcciones más fina y granulada, calculando las direcciones necesarias y "desperdiciando" las mínimas posibles, para rodear el problema que la distribución por clases había estado gestando. Este sistema es, de hecho, el empleado actualmente para la delegación de direcciones.
Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño a menudo se usa TCP/IP. Por ejemplo, los bancos pueden utilizar TCP/IP para conectar los cajeros automáticos que no se conectan a la red pública, de manera que las direcciones privadas son ideales para ellas. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles.
Máscara de subred
La máscara permite distinguir los bits que identifican la red y los que identifican el host de una dirección IP. Dada la dirección de clase A 10.2.1.2 sabemos que pertenece a la red 10.0.0.0 y el host al que se refiere es el 2.1.2 dentro de la misma. La máscara se forma poniendo a 255 los bits que identifican la red y a 0 los bits que identifican el host. De esta forma una dirección de clase A tendrá como máscara 255.0.0.0, una de clase B 255.255.0.0 y una de clase C 255.255.255.0. Los dispositivos de red realizan un AND entre la dirección IP y la máscara para obtener la dirección de red a la que pertenece el host identificado por la dirección IP dada. Por ejemplo un router necesita saber cuál es la red a la que pertenece la dirección IP del datagrama destino para poder consultar la tabla de encaminamiento y poder enviar el datagrama por la interfaz de salida.Para esto se necesita tener cables directos
Creación de subredes
El espacio de direcciones de una red puede ser subdividido a su vez creando subredes autónomas separadas. Un ejemplo de uso es cuando necesitamos agrupar todos los empleados pertenecientes a un departamento de una empresa. En este caso crearíamos una subred que englobara las direcciones IP de éstos. Para conseguirlo hay que reservar bits del campo host para identificar la subred estableciendo a uno los bits de red-subred en la máscara. Por ejemplo la dirección 172.16.1.1 con máscara 255.255.255.0 nos indica que los dos primeros octetos identifican la red (por ser una dirección de clase B), el tercer octeto identifica la subred (a 1 los bits en la máscara) y el cuarto identifica el host (a 0 los bits correspondientes dentro de la máscara). Hay dos direcciones de cada subred que quedan reservadas: aquella que identifica la subred (campo host a 0) y la dirección para realizar broadcast en la subred (todos los bits del campo host en 1).
IP dinámica
Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente.
DHCP apareció como protocolo estándar en octubre de 1993. El estándar RFC 2131 especifica la última definición de DHCP (marzo de 1997. DHCP sustituye al protocolo BOOTP, que es más antiguo. Debido a la compatibilidad retroactiva de DHCP, muy pocas redes continúan usando BOOTP puro.
Las IP dinámicas son las que actualmente ofrecen la mayoría de operadores. Éstas suelen cambiar cada vez que el usuario reconecta por cualquier causa.
Ventajas
• Reduce los costos de operación a los proveedores de servicios de Internet (ISP).
• Reduce la cantidad de IP asignadas (de forma fija) inactivas.
Desventajas
• Obliga a depender de servicios que redirigen un host a una IP.
Asignación de direcciones IP
Dependiendo de la implementación concreta, el servidor DHCP tiene tres métodos para asignar las direcciones IP:
• manualmente, cuando el servidor tiene a su disposición una tabla que empareja direccione MAC con direcciones IP, creada manualmente por el administrador de la red. Sólo clientes con una dirección MAC válida recibirán una dirección IP del servidor.
• automáticamente, donde el servidor DHCP asigna permanentemente una dirección IP libre, tomada de un rango prefijado por el administrador, a cualquier cliente que solicite una.
• dinámicamente, el único método que permite la reutilización de direcciones IP. El administrador de la red asigna un rango de direcciones IP para el DHCP y cada ordenador cliente de la LAN tiene su software de comunicación TCP/IP configurado para solicitar una dirección IP del servidor DHCP cuando su tarjeta de interfaz de red se inicie

IP fija
Una dirección IP fija es una IP asignada por el usuario de manera manual. Mucha gente confunde IP Fija con IP Pública e IP Dinámica con IP Privada.
Una IP puede ser Privada ya sea dinámica o fija como puede ser IP Pública Dinámica o Fija.
Una IP Pública se utiliza generalmente para montar servidores en internet y necesariamente se desea que la IP no cambie por eso siempre la IP Pública se la configura de manera Fija y no Dinámica, aunque si se podría.
En el caso de la IP Privada generalmente es dinámica asignada por un servidor DHCP, pero en algunos casos se configura IP Privada Fija para poder controlar el acceso a internet o a la red local, otorgando ciertos privilegios dependiendo del número de IP que tenemos, si esta cambiara (fuera dinámica) sería más complicado controlar estos privilegios (pero no imposible).
Las IP Públicas fijas actualmente en el mercado de acceso a Internet tienen un costo adicional mensual. Estas IP son asignadas por el usuario después de haber recibido la información del proveedor o bien asignadas por el proveedor en el momento de la primera conexión.
Esto permite al usuario montar servidores web, correo, FTP, etc. y dirigir un nombre de dominio a esta IP sin tener que mantener actualizado el servidor DNS cada vez que cambie la IP como ocurre con las IP Públicas dinámicas.
Las direcciones IP son un número único e irrepetible con el cual se identifica una computadora conectada a una red que corre el protocolo IP.